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INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Why Data-Driven Computing Now?

e The world’'s data volume has increased dramatically over the past ~20 years.
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Why Data-Driven Computing Now?

200
Volume of data/information created, captured, copied,

and consumed worldwide from 2010 to 2025.
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“Data Ownership: Who owns my data?”

- Int. J. Inf. Technol., 2(1) (2012) 1-8.

https://www.statista.com/statistics/871513/worldwide-data-created/
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Why Data-Driven Computing Now?

e The world’'s data volume has increased dramatically over the past ~20 years.

e With the advent of cloud infrastructure circa 2000, previous limits on storage
became obsolete.

e As billions of new users gained internet access across the globe, data generation
increased enormously.
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Why Data-Driven Computing Now?
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Why Data-Driven Computing Now?

e The world’'s data volume has increased dramatically over the past ~20 years.

e With the advent of cloud infrastructure circa 2000, previous limits on storage
became obsolete.

e As billions of new users gained internet access across the globe, data generation
increased enormously.

e Soon, companies around the world adopted Big-Data strategies, developed tools.

e Tools, algorithms, for learning—and making predictions, decisions—from big-data
sets are now generically referred to as Machine Learning.

e Machine Learning is a modern version of statistical analysis (regression, testing,
inference...) and data mining (discovering patterns in data).
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Why Data-Driven Computing Now?

Machine Maths_&
Learning Statistics

Data

Traditional Analysis

Software

Great Learning Team,
What is Data Science and How Does it Work:
A Complete Beginner’s Guide, Jan 11, 2022.
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Why Data-Driven Computing Now?

e The world’'s data volume has increased dramatically over the past ~20 years.

e With the advent of cloud infrastructure circa 2000, previous limits on storage
became obsolete.

e As billions of new users gained internet access across the globe, data generation
increased enormously.

e Soon, companies around the world adopted Big-Data strategies, developed tools.

e Tools, algorithms, for learning—and making predictions, decisions—from big-data
sets are now generically referred to as Machine Learning.

e Machine Learning is a modern version of statistical analysis (regression, testing,
inference...) and data mining (discovering patterns in data).

e Key enablers (what is old? what is new?):
i) Advent of high-performance and distributed computing.
ii) Cost of storing and managing big data sets dramatically lowered.
iii) Commercial data sets available (weather, social media, medical).
iv) Tools available through open-source communities with large user bases.

e Sea-change in the way data is generated, managed and utilized! Here to stay,
cannot be ignored by the scientific computing community.
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The anatomy of a field theory

e How does Data Science intersect with scientific computing?
e Scientific computing deals with the field theories of physics.
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The anatomy of a field theory

e \
1671-@4/ 4F +9iDy- MJ T\[

//
\)(\_

James Clerk Maxwell
June 13, 1831 (Edinburgh)
November 5, 1879 (Cambridge)

1
L= ——F JFY — A J*
4pg W
Richard Feynman
May 11, 1918 (New York City)
February 15, 1988 (Los Angeles)

NB: Duality structure!
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The anatomy of a field theory

e How does Data Science intersect with 7

e Scientific computing deals with the of physics.

e Field theories describe how a field evolves in time or depends on other variables.

e Field theories often constructed by writing a Lagrangian or a Hamiltonian of the
field and treating it as a classical or quantum system with a finite or infinite number
of degrees of freedom.

e The resulting field theories are referred to as classical or quantum field theories and
have a particular mathematical structure expressed in terms of field equations:

Field Potential Conservation Material law
Gravitation g=-V¢ | V-f4+4mp=0 | f=g/G (Newton)
Electrostatics E=-VV V-D =A4mp D=¢c¢kE
Electromagnetics | B=V x A VxH=1J H=B/u
Diffusion g=—Vc V- J+s5=0 J = D g (Fick)
Heat transfer g=—-VT V-J+s5=0 J = k g (Fourier)
Elasticity e=symVu | V-o+f=0 o = Ce (Hooke)
General € = du oo+ f=0 77

e Field equations are exactly known, only material law is determined from data!
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Why Data-Driven Computing Now?

e How does Data-Science intersect with computational mechanics?

e Material data is currently plentiful due to dramatic advances in
experimental science (DIC, EBSD, microscopy, tomography...) and
multiscale computing (DFT —- MD — DDD — SM — Hom)

reference

Digital Volume Correlation
(DVC): Two confocal volume
images of an agarose gel with
randomly dispersed fluorescent
particles before and after
mechanical loading. The full
displacement vector field is
measured using 3D volume
correlation methods.

deformed

C. Franck, S. Hong, S.A. Maskarinec,
D.A. Tirrell and G. Ravichandran,
Experimental Mechanics (2007)
47:427-438.

x [voxel]
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Why Data-Driven Computing Now?

e Material data can also be generated in large volumes from high-fidelity
micromechanical calculations (DFT, MD, DD...)

e New role for multiscale analysis: Data generation

10 50
Amorphous SiO, glass: L T=400K Rl
LAMMPS MD calculations of z ,:w“*"(( ;s
amorphous silica glass under 5[ ff;{« e ‘M =07 HEaw
pressure-shear loading over Bl e %g‘%@wﬂwvﬂm o al  EEiE
a range of temperatures and g | i ‘«’ gag-;*‘éf oo™
strain rates. RVEs are / x‘,“‘”ﬂw S
gquenched from the melt, < —| _ :
then analyzed using the BKS Shear Strain (mim) A 0,
potential with Ewald 10
summation. L T=1900K
Schill, W., Heyden, S., Conti, S. g . e é
& MO, JMPS, 113 (2018) 105-125. T I s 3
Schill, W., Mendez, J.P., Stainier, L. ? ’
& MO, JMPS, 140 (2020) 103940. .
Shear Strain (m/m) Shear Strain (n::'n) "
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Why Data-Driven Computing Now?

e Material data can also be generated in large volumes from high-fidelity
micromechanical calculations (DFT, MD, DD...)

e New role for multiscale analysis: Data generation

Granular matls. (dry sand):
Level-Set Discrete Element
Method (LS-DEM) simulation of
granular material samples. 3D
irregular rigid particles interact
through frictional contact.
Particle morphology described
by level-set functions. Note
calculation of dissipation and

free energy.

Karapiperis, K., Harmon, J., And, E.,
Viggiani, G. & Andrade, J.E.,
JMPS, 144 (2020) 104103.

Karapiperis, K., Stainier, L., Ortiz, M.
& Andrade, J.E., JMPS, 147 (2021) 104239.
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Model-Free Data-Driven Computing

e Mechanics of materials is presently data rich: Challenge and opportunity!
e Data-Driven Computing: Forge a closer connection between data and predictions.

e Model-Based (supervised) vs. Model-Free (unsupervised) Data-Driven computing:

Model-Based Data-Driven computing: Data — Model — Prediction
Model-Free Data-Driven computing: Data — Prediction
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Model-Free Data-Driven Computing

Artificial Intelligence

Natural
Language
Processing

Learning Learning Learning

Supervised learning: Find (e.g., by
regression) a function (e.g., deep
Neural Network) from data containing
both inputs and outputs (labels).

J. Hurwitz & D. Kirsch, Machine Learning,
John Wiley & Sons, 2018.
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Model-Free Data-Driven Computing

Artificial Intelligence

o (MPa)

Unsupervised learning: Find structure
in unlabeled data sets (e.g., grouping, .
clustering, density), make predictions
directly from data structures.

J. Hurwitz & D. Kirsch, Machine Learning,
John Wiley & Sons, 2018.

Hierarchical k-means
representation, set based
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Model-Free Data-Driven Computing

e Mechanics of materials is presently data rich: Challenge and opportunity!
e Data-Driven Computing: Forge a closer connection between data and predictions.

e Model-Based (supervised) vs. Model-Free (unsupervised) Data-Driven computing:

Model-Based Data-Driven computing: Data — Model — Prediction
Model-Free Data-Driven computing: Data — Prediction

e Critique of Model-Based Data-Driven computing:
i) Modeling is lossy (information in model < information in data).

Modern
\ 5 _.'.}.__:-.' M rl I
microscopy: g i Reral daa
;nass:ve Modeling
ata sets e funnel
Modelling: .
massive Material model
_ floss c;f ' - | i funnel
information! ~ Gl Simulation
FE analysis:

garbage in g v

garbage out
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Model-Free Data-Driven Computing

e Mechanics of materials is presently data rich: Challenge and opportunity!

Data-Driven Computing: Forge a closer connection between data and predictions.

Model-Based (supervised) vs. Model-Free (unsupervised) Data-Driven computing:

Model-Based Data-Driven computing: Data — Model — Prediction
Model-Free Data-Driven computing: Data — Prediction

e Critique of Model-Based Data-Driven computing:
i) Modeling is lossy (information in model < information in data).
ii) Modeling is ad hoc (involves arbitrary decisions, sausage making).
iii) Modeling introduces biases, modeling error, epistemic uncertainty.
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Model-Free Data-Driven Computing

e Mechanics of materials is presently data rich: Challenge and opportunity!

Data-Driven Computing: Forge a closer connection between data and predictions.

Model-Based (supervised) vs. Model-Free (unsupervised) Data-Driven computing:

Model-Based Data-Driven computing: Data — Model — Prediction
Model-Free Data-Driven computing: Data — Prediction

e Critique of Model-Based Data-Driven computing:
i) Modeling is lossy (information in model < information in data).
ii) Modeling is ad hoc (involves arbitrary decisions, sausage making).
iii) Modeling introduces biases, modeling error, epistemic uncertainty.

[ ] Molecular Dynamics Data
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Model-Free Data-Driven Computing

e Mechanics of materials is presently data rich: Challenge and opportunity!
e Data-Driven Computing: Forge a closer connection between data and predictions.

e Model-Based (supervised) vs. Model-Free (unsupervised) Data-Driven computing:

Model-Based Data-Driven computing: Data — Model — Prediction
Model-Free Data-Driven computing: Data — Prediction

e Critique of Model-Based Data-Driven computing:
i) Modeling is lossy (information in model < information in data).
i) Modeling is ad hoc (involves arbitrary decisions, sausage making).
iii) Modeling introduces biases, modeling error, epistemic uncertainty.
iv) Modeling is ill-posed (no notion of continuity, convergence, with respect to data).

NASA L89-14711

. H ?
OGTOBER 1014 2022 - CISM Data set sequence: Convergence of solutions:
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Model-Free Data-Driven Computing

e Mechanics of materials is presently data rich: Challenge and opportunity!
e Data-Driven Computing: Forge a closer connection between data and predictions.

e Model-Based (supervised) vs. Model-Free (unsupervised) Data-Driven computing:

Model-Based Data-Driven computing: Data — Model — Prediction
Model-Free Data-Driven computing: Data — Prediction

e Critique of Model-Based Data-Driven computing:
i) Modeling is lossy (information in model < information in data).
i) Modeling is ad hoc (involves arbitrary decisions, sausage making).
iii) Modeling introduces biases, modeling error, epistemic uncertainty.
iv) Modeling is ill-posed (no notion of continuity, convergence, with respect to data).

e Cut-out the middleman! Model-Free Data-Driven computing: Make predictions
directly from the data.

The data, all the data, nothing but the data

How?
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Why Data-Driven Computing Now?

e Itis possible to formulate boundary-value problems, convergent
approximation schemes, based directly on material data, without the
intermediate step of constitutive modeling

e The Model-Free Data-Driven paradigm forges a direct connection
between material data and solutions of boundary-value problems, in
the spirit of unsupervised learning

e Results extend to infinite-dimensional problems (linear, finite elasticity)
e Solvers? Data structures, searching? Connections to Machine Learning?
e Extension to time-dependent problems? (e.g., dynamics)
e Extension to inelasticity? (viscoelasticity, viscoplasticity, plasticity)
e Probability? Inference? (scatter, random materials, random loads...)
e Where does the data come from?

— Multiscale Data-Driven schemes

— Data-Driven Material Identification
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Why Data-Driven Computing Now?

TIME TABLE

Monday Tuesday Wednesday Thursday Friday

October 10 October 11 October 12 October 13 October 14

09.45-10.30 Ortiz Schonlieb Stainier Doblaré Doblaré

11.45-12.30 Ortiz Ortiz Schénlieb Stainier Ortiz

14.45 - 15.30 Réthoré Schonlieb Reese Reese

16.45-17.30 Réthoré (DIC) Rethoré (DDI) Poster Session Reese

OCTOBER 10-14, 2022 . CISM



INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Why Data-Driven Computing Now? - Lecture plan

e MD: Physically-informed neural networks in predictive physics
e MO: Fundamentals of (model-free) Data-Driven mechanics

e JR: Data-Driven material identification, experimental methods
e SR: Data structures, solvers, algorithmic strategies, plasticity
e CBS: Imaging, mathematical approaches, hybrid modeling

e LS: Extensions to finite elasticity, multiscale analysis, design

OCTOBER 10-14, 2022 . CISM



INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Why Data-Driven Computing Now?

TIME TABLE

Monday Tuesday Wednesday Thursday Friday

October 10 October 11 October 12 October 13 October 14

09.45-10.30 Ortiz Schonlieb Stainier Doblaré Doblaré

11.45-12.30 Ortiz Ortiz Schénlieb Stainier Ortiz

14.45 - 15.30 Réthoré Schonlieb Reese Reese

16.45-17.30 Réthoré (DIC) Rethoré (DDI) Poster Session Reese
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to be continued...
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