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The anatomy of a field theory

e Scientific computing deals with the field theories of physics.

Field Potential Conservation Material law
Gravitation g=-V¢ | V-f+4rp=0 | f=g/G (Newton)
Electrostatics E=-VV V-D=A4rmp D=¢F
Electromagnetics | B=V x A VxH=J H=B/u
Diffusion g=—Vc V- J+s=0 J = D g (Fick)
Heat transfer g=—-VT V- J+s=0 J = k g (Fourier)
Elasticity e=symVu | V-o+f=0 o = Ce (Hooke)
General € = du oo+ f=0 7
_ _ o (MPa)
e Field equations are exactly known, 100
material law is determined from data! o ) ‘ﬁ"
e Engineering predictions? T a :'-"; |
e Mathematical solutions? : ..;:.':'"_ X
e Numerical approximations? i
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Example: Elastic bar

e Phase space, Z = {(€,0)}.

e Note (€, 0) work-conjugate

e Dimension of Z is even

e Compatibility: e =u/L

e Equilibrium: 0 A = k(ug —u)
e Eliminate u: 0A = k(ug —€l)

Definition (Constraint set)

The constraint set is the affine subspace of
Z containing all admissible states (e, 0)
satisfying compatibility and equilibrium:

E ={(e0) : cA=k(up—eL)}

Definition (Material data set)

The material data set D is the subset of Z
containing all the observed states (¢, 0).

OCTOBER 10-14,2022 - CISM

Definition (Classical solution)

The classical solution is the
intersection DN FE, i. e., the set of all
material states that are admissible.

o (MPa)

100
80
60 -
40+

20 -

Phase space
E D
A N

< transversality!

[

DNE

intersection!

1

€ (%)
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Example: Elastic bar

o (MPa)

100
80

60 -
solution
or T unique!

o (MPa)

100

80 E
s

60

40 ~D DﬂE:@

- no solution!
. |
0 | 2 3 4
€ (%)
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o (MPa)
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o (MPa)
100
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L multiple
° solutions!
40
20
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€ (%)

DNE =1

no solution!
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Example: Elastic bar

e Suppose that D = point set ! A k ®
NAN—O—>

e Then, DNE =) ! 7 |

e No classical solutions! Must extend the

concept of solution, classical approach is

too rigid

Definition (Data-Driven solution) E

An admissible state z € E is a

Data-Driven solution if it minimizes the
distance to the material data set D,

dist(z, D) — min!, 2z € F

e Recall: distQ(z, D) = mingep |y — ZH2 5l

e Data-Driven problem: 20

min min||y—zH2 = min min Hy—z“2 0 ! 2
zeEyeD yeD ze & € (o/o)

e Find material state y € D and admissible state z € F closest to each other.
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The Model-Free Data-Driven paradigm o (MPa)

100

. Phase space-

Definition (Data-Driven Problem)
Given phase space Z = RY x RV,
i) D = {material data} C Z,
i) E = {field equations} C Z,

Find: argmin{|ly — z||* : y € D, z € E}

2
e Discussion: € (%)

Phase space Z determined by field equations (field-theory dependent)

Fundamental data (model-independent) = Points in phase space

No material modeling, no loss of information, no biasing of the data

DD problem generalizes and subsumes classical field-theoretical problems

e Outlook:

Extensions to infinite dimensions? (e.g., linear elasticity)

Extensions to geometrically-nonlinear problems? (e.g., finite elasticity)

Well-posedness of Data-Driven problems? Convergence with respect to data?

Solvers? Computational performance? Scaling?
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Structural /solid mechanics

e Finite-dimensional solids/structures
e m structural members or Gauss points
e Local phase spaces: Fore=1,...,m,
Ze ={ze := (€e,0e)} = RY x R
e Global phase space: With N = md,
Z ={z:=(e0) = (€c,0¢)™ 1} = RV x RY
e Metric: With C:;F = Ce¢, Ce > 0, we > 0,
127 = 37 we(Ceee - € + Cg Poe - 0e).
e Compatibility, equilibrium: For e =1,...,m,
e = Beu+ge, Yoot weBloe=f

OCTOBER 10-14, 2022 - CISM
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Structural/solid mechanics

e Finite-dimensional solids/structures

@)

—> N [«

@)
R |
@)

[< >
THE FINITE ELEMENT METHOD L 2 x 2 Gauss points

e Finite-element interpolation:

u= ZNiai

e Strains at Gauss quadrature points:

_ a - ‘aN 7]
0 :
c 8x’ 8x 7 0
* 0 u ON;
€ = €y = O, 8_)/ {U}:Su = BZ-ZSNZ': 07 ay
ny 2 2 (9Nl 8Nl
LJy’ Ox. | Jy 7 Ox
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Structural /solid mechanics

e Finite-dimensional solids/structures
e m structural members or Gauss points
e Local phase spaces: Fore=1,...,m,
Ze = {ze := (€e,0¢)} = R x RY
e Global phase space: With N = md,
Z ={z:=(e,0) = (€e,0¢)™ 1} = RY x RY
e Metric: With Cl' = C., Cc > 0, we > 0,
122 = S we(Ceée - €c + Ce M oe - o¢).
e Compatibility, equilibrium: Fore =1,...,m,
S weBloe=f
e Admissible space: Given f € R", g € RN
E={(e,0)€Z :e=Bu+g, BtWo = [}
e Local material sets: De C Ze, e =1,...,m,
e Global material set: D =Dy X --- X Dy, C 4
e Data-Driven problem: Given Z, D and FE, find
argmin{||y — z|*, y € D, z € E}

€e = Beu + ge,

OCTOBER 10-14, 2022 - CISM
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Field-theoretical structure of constraint spaces

Definition (Constraint set)

The constraint subspace E is the set of points (¢,0) € Z = RY x RY such that
e=Bu+g, Blo=", (field eqgs)

with B € L(R",RY), n < N, f e R", g € RV,

Theorem (Constraint sets)

Let Z=RN xRN and B € L(R",RY), n < N. Then,
i) The system of equations (field eqs) has solutions (u, €, o) if and only if

ffv=0, WoeKer(B).
ii) The solutions of (field eqs) satisfy the work-energy identity

flu=o"(e—g).

iii) If condition (i) is satisfied, then the set E of all solutions of (field eqs) is an
affine subspace of Z of dimension N and co-dimension N.

OCTOBER 10-14,2022 - CISM
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Field-theoretical structure of constraint spaces

Proof.

i) The equations in (field eqs) are decoupled. The first is always soluble. By the
Fredholm alternative theorem of linear algebra, the second is soluble iff (i) holds.

i) Suppose that (i) holds and let (u,e, o) be a solution of (field eqs). Then,
flu=06"Bu=0o"(e—g).

iii) If (i) holds, then there exists g € R” such that f = B o, and the affine space
E defined by (field eqs) is a translate of the linear subspace Ey defined by the
homogeneous constraints

e=Bu, Blo=0, (hom field eqs)

Evidently, Eg = Fe X Es, where E¢ is the linear subspace defined by the first of (hom
field eqs) and E is the linear subspace defined by the second. Therefore, we have

dim(Ep) = dim(Ee) + dim(Es) = dim(Im(B)) + dim(Ker(B*)) = N.

Since Z = RY x RY, it follows that the constraint set E is an affine subspace of Z
of dimension N and co-dimension V. []
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Field-theoretical structure of constraint spaces

Example y
om=6,d=1, N =md = 6.
® Suppose f =0 = BTs =0

D (6,0,0) m

@ From A: oo = oA = oap = 0.

@ From B, C, D: ogc = ocp = op = 0.

o Together: Ker(B1) =0 = Im(B) = RS,

o dim(F) = dimKer(B?) 4+ dimIm(B) = N.

Example
oem=7,d=1, N =md=1"1.
@ Suppose f =0 = BTo = 0. Fix OAE-
® From A = {0AB,0AB,0AB}-
e From B, C, D = {oBc,0cD,DB}-
o Together: Ker(B?) =R = Im(B) = R,
o dim(F) = dim Ker(B?) 4+ dimIm(B) = N. :

D (6,0,0)m
=)
&2

OCTOBER 10-14, 2022 - CISM
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The Model-Free Data-Driven paradigm

o (MPa)
100
80 E D y
)4 N
60 -
- T y—=z
20+ yo — ZO
z

% ] 2 " ;

€ (%)

Theorem (Existence of DD solutions)

Let Z =RY xRY, E an affine subspace of Z and D a non-empty closed subset of
Z. Suppose that the transversality condition

ly =zl = c(llyll + 1Iz) — &

holds for all y € D, z € E, with constants ¢ > 0 and b > 0. Then, the DD problem
has at least one solution.

OCTOBER 10-14,2022 - CISM
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The Model-Free Data-Driven paradigm

o (MPa)
100
80 E D y
)4 N
60 -
T y—=z
20+ yo — ZO
z

00 1 2 ) 4

€ (%)

e Transversality between D and E is a necessary condition for existence.

e Transversality requires D and FE to increasingly separate from each other:
ly =zl = +oo if: |ly —woll = 400, or |lz— 2z = +oo.

e Transversality condition makes sense for general (non-manifold) material data sets,
including point sets.

OCTOBER 10-14,2022 - CISM
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The Model-Free Data-Driven paradigm

o (MPa)
100
80 E D y
/4 A}
T y—=z
2l Yo = 20
z

00 l‘ 2 ) 4

€ (%)

Proof.

Let (yp,2n) C D X E be a minimizing sequence. By transversality, (y5,) and (z5) are
bounded in Z. Passing to subsequences, there is (y,2) € Z x Z such that

(yn, 2n) — (y, 2). By the closedness of E and D, it follows that (y,z) € D x E. By
the continuity of the norm,

inf |y’ =" <lly—z|"= lim [yp—2)"= ~inf =27
(y/,2")EDXE h—o0 (y',2')eDXE

and (y, z) is a DD solution. ]
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Classical solutions are recovered from DD solutions

Lemma (Elastic structures, transversality)
Let Z=RY x RY, E affine subspace of Z, dim(E) = N, D = {o = Ce}. Suppose
that BTCB > 0. Then, EF and D are transversal.
Proof. (reading assignment)
Recall Eg = Im(B) x Ker(B1). We claim that there is ¢ > 0 such that
ly =2l > e(llyll +11211), Yy e D, 2 € Ey.

With 2’ = (¢/,0"), € € Im(B) and ¢’ € Ker(B!), we have

ly —2'||? > dist?(2', D) = %C_l(a/ —Cd) - (o = C€).
By the orthogonality: ||y —2/||* > 5C 1o’ -0/ + 3C - ¢ = 1||2||* | and

ly - 2'll = Slly— 2/l + bdist(='. D) 2 3lly— |+ L1 1211 = e(llyll + 12']):

Let zg be the unique elastic solution, y € D, z € F, 2 =2—29 € Ey. Then,

121l = [|2[l = llz0ll and [ly — 2]l = c([lyll + [I2[) — ¢ [zoll. ]

OCTOBER 10-14,2022 - CISM
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Classical solutions are recovered from DD solutions

Theorem (Elastic structures)

Let Z =RYN x RY, E affine subspace of Z, dim(E) = N, D = {0 = Ce},
BYCB > 0. Then, there is a unique DD solution such that o = Ce.

Proof. (reading assignment)

By the transversality lemma and the existence theorem, it follows that there are DD
solutions. Let z = (¢,0) € E be a DD solution. By minimality of the distance,

1C o —Ce)- (¢! —C€) =0, forall 2/ = (',0") € Fo.

Choosing ¢ = 0 and ¢/ € Ker(BT): C7lo —e e Ker(BT)+ =Im(B).
Hence, there is u € R" such that: C !0 —e = Bu.

Choosing 0/ = 0 and ¢ € Im(B): ¢ — Ce € Im(B)" = Ker(BT).
Hence: BT (6 —Ce) = BICBu=0= v =0, and o = Ce.

To prove uniqueness, let 2z’ and z”’ be two DD solutions. Then, by linearity,
2 — 2" € DN Ey is a DD solution with zero forcing. It follows that

|2 —2"||* = 2dist? (2’ — 2/, D) =0 = 2/ = 2",

OCTOBER 10-14,2022 - CISM
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The topology of Data Convergence

Theorem

Let (Dy,) be a sequence of subsets of Z,
D a subset of Z and E an affine subspace.
Let z be an isolated point of DN E and
let yy,, zp, € Z be such that

(yn> 2n) € argmin{|y’ — 2’|, y" € Dy, 2" € E}.
Suppose that:

i) There is a sequence py, | 0 such that:  dist(y, Dy) < pp, Yy € D.
ii) There is a sequence ty, | 0 such that: dist(y, D) <tp, Yy €& Dy,.
iii) (Transversality) There is a constant 0 < A < 1 s. t., forall y € D,

1PEy — 2| < Aly — 2|,

d 1l —z|| = 0.
< BETREI and tim ||z, — 2]

OCTOBER 10-14, 2022 . CISM
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The topology of Data Convergence

Proof. (reading assignment)

By assumption (i), we can find &;, € Dy, such that ||&, — z|| < pp,
By optimality:  dist(y, E) < dist(&, F)
Then, we have: |y, — 2| = dist(yp, E) < dist(&p, E) < [[p — 2]| < pn
By assumption (ii), we can find 0y, € D such that: ||y, —nn|l <t
By the triangle inequality: ||z, — z|| < ||z — Penn|| + || PEnn — ||
By the contractivity of projections:

lzn — Pennll = 1Peyn — Pennll = |1Pe(yn — n0)ll < llyn — mall < ta
By transversality, with 0 < A < 1:  [|[Pgn, — z|| < Ao, — ||
Triangulating again: ||y — 2[| < |l — yall + llyn — 20l + 120 — 2|

Collecting estimates:  ||zp, — z|| < t), + A(tn + pn + |lzn — 2]|)

OCTOBER 10-14, 2022 . CISM
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The topology of Data Convergence

15
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OCTOBER 10-14, 2022 - CISM T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.
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The topology of Data Convergence

OCTOBER 10-14, 2022 -

CISM

T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.

1E+08 =
- o g Stress (Log Slope:-0.611)
5 : - Strain (Log Slope:-0.686)
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I 210'25-
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-1E+08 _\ oo b b b b b 10.4k ool R | ol ol NIRRT |
-0.006  -0.004  -0.002 0 0.002  0.004  0.006 10° 10° 10° 10° 10° 107
Strain (m/m) Number of Data Points
Sequence of Convergence with respect to
uniformly converging data sets material data set towards
(increasing number of points, solution of limiting problem
decreasing scatter) (nonlinear elasticity)
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Solvers: Fixed-point iteration

e Find: argmin{dist(z, D), z € E}

e Solver: 2(k) = Pp OPEz(k_l)

« Implementation?
« Convergence?

® Pp := closest-point projection onto D.

® Pg := closest-point projection onto FE.

o
100 -

Fixed-point iteration,
manifold data set D

OCTOBER 10-14,2022 - CISM
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Solvers: Fixed-point iteration

e Degrees of freedom: (u;);

e Phase space: Z = {(€e,0¢)0% 1}

e Norm: ||(e,0)||* = St we (CeEe +C.! Ue
e Constraint set: £ = {e¢ = Bu, Blwo = f}

e Data-Driven problem:

min ((min |](e—e’,a—g’)”2>

(¢’,o’)eD \ (e,0)EE

e Projection to E (inner minimization at fixed (¢’,0")): i) Enforce compatibility
directly by writing € = Bu; ii) Enforce equilibrium through a Lagrange multiplier v,

5(H(Bu— d.o—d)|)? = (B'Wo - f) -v) =0

e Euler-Lagrange equations: (BTCWB)u = BTCe/, (BTCWB)v = f— B¢’
e State update: €= Bu; o =o0¢ + CBuw.
e Two standard linear problems! (regardless of material behavior).

e DD leads to (material-independent) standardization of solvers.
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Solvers: Fixed-point iteration

—= Applied Displacement =0 . 18 e

e Degrees of freedom: (u;); o TR

o (MPa)
%

e Phase space: Z = {(€e,0¢)01}
e Norm: ||(e,0)||* = St we (Ceee +C.t Je

e Constraint set: £ = {e¢ = Bu, BTwo = f}

e Data-Driven problem:

. . / AT

min ( min |[(e—€,0—0)] >
(¢’,o’)eD \ (e,0)EE

e Outer minimization: Projection onto (closest point in the) material data set D

e Fast searching algorithm Lor

e Requires data structures

e 'Learning’ structure of D

e Set-oriented (lossless) ML! s
cf. S. Reese’s lecture! " , ] S S
Wednesday 12, 14:00-14:45 € %00 02 o4 G/E:s 08 10

OCTOBER 10-14, 2022 - CISM
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Solvers: Fixed-point iteration - Using commercial software

- : r
data - sets &e’ Ny )
FE - tool
material A )
commercial
material B - | DD - solver
: |+ data selection open source
material C « data structure z = Pp(y) pe—
- s\gl 1 o) initialization
/’ . BVP initialization
* do while: 6%
data - search _ — equilibrium \é
y = NN(z) projection
k-d tree — NN - search Demo example:

Left: Reference FE
Right: DD-ABAQUS

k-means tree

kNN-graph

: ;
0.3 0.7

E. Prume, L. Stainier, M. Ortiz, and S. Reese,
OCTOBER 10-14, 2022 - CISM Proc. Appl. Math. Mech., 5 October 2022.
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Solvers: Fixed-point iteration - Data flow

=

<

JAIA

WAREHOUSE

Material
data
lookup

—

Material-
independent
linear problem
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Fixed-point iteration

Theorem

Let Z =RY x RY, D and E transversal affine subspaces of dimension N. Then, the
fixed-point iteration converges to the unique solution of the Data-Driven problem.

/
o o
€ €
Fixed-point iteration, Fixed-point iteration,
affine data set D point data set D
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Fixed-point iteration

Proof.

By translation, D, E = linear spaces.
Consider the fixed-point iteration

(ks> 2k) = (Yk+1,2641) = (Pp2k, PEVYK)-

By the orthogonality of the projections,

2 2 2 2 2 2
126" = vk ll” + lve+1 — 26l vell” = ze+1ll” + 241 — vill”

By transversality, for some ¢ > 0,

2 2 2 2 2 2
1Yk+1 = 26 l1” + 2k — well™ = clllyr-1 17 + lzi4117) + cCllyell™ + [[2x]17).

Combining, rearranging,

9 9 1—c 9 2
|yk+1ll” + 241l < Uyell® +lz6ll7)-

— 1+4c¢

Hence, (yi,2x) — (Yr11,2k11) is a contraction and (yg, zi) — (0,0).

OCTOBER 10-14, 2022 . CISM
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Fixed-point iteration

Theorem

Let E be an affine subspace of Z and
(Dy,) an equi-transversal sequence of point
subsets of Z converging uniformly to D.
Let (yp,,zp) be a fixed point of

(Y 2k) = (Ppy, 2k> PEYn)- Then,

(yn, 21 ) converges to a solution (y, z) of
the D Data-Driven problem.

Proof.

If (yp,2n) is a fixed point of the iteration,
yn, = Pp, zp, and zp, = Pgyy. By uniform
convergence, ||lyn, — zp|| — 0. By
equi-transversality, y;, -y € D,

zp, — z € E and y = z, hence a solution
of the D Data-Driven problem. []

OCTOBER 10-14, 2022 . CISM
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The topology of Data Convergence
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The topology of Data Convergence

1E+08 :
i = 100 pts
B - 23 steps
5E+07 |- R :
- B 10°F
| o [
— m =
x| B 1000 pts
a | s 10 F 99 steps
o o =1 8
2 rom|
s | g10'E
2 1 s 10000 pts
i 3100k 743 steps
-5E+07 |- E
. 10"
B - 100000 pts
i F 2039 steps
_1 E+08 e I L I ] I Ll I L l —— I 10 E | I | | 1 L I | | 1 1 I L | L 1 I L | L 1 I L 1 | | I |
-0.006 -0.004 -0.002 0 0.002  0.004  0.006 0 500 1000 1500 2000 2500
Strain (m/m) lterations

Convergence of fixed-point solver:
Each iteration requires two back-
substitutions for standard linear

systems and one material data
search/member

Sequence of
uniformly converging data sets
(increasing number of points,
decreasing scatter)

OCTOBER 10-14, 2022 - CISM T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.
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Model-free Data-Driven finite-elements

0.12
0 gt e DD FE calculations
0.1 . .
551 e Linear elasticity
\ 0.08 e Perforated plate
ol 0.06 e Synthetic data
, 004 R. Eggersmann, S. Reese
-25 - i L1 RWTH Aachen (2019) .
: 0.02
50. T S cf. S. Reese’s lecture!
1100 50 0 50 200 Wednesday 12, 14:45-15:30

DD FE calculations

Finite elasticity

Twisted elastic rod
Random Green-S. Venant
10,000,000 data points

A. Platzer, Doctoral Thesis,
Ecole Centrale de Nantes, 2020.

cf. L. Stainier’s lecture!
Thursday 13, 11:00-11:45
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Model-free Data-Driven finite-elements

e Sequence of FE discretizations of size h;,. e z = solution of (D, E)-problem.
e Sequence of admissible sets (Ep, ). e 2j, = solution of (D, E},,)-problem.

e Sequence of material-data sets (Dy,). ® 2j p, = solution of (Dy, Ey, )-problem.

31

tp,
E)

<D
Theorem Assume:

i) (Equi-transversality) There is 0 < A < 1 s. t.,
1PE,, y—2ll < Aly—=z|, forally € Dy,

&
Dy,

Ph
ii) (Finite-element convergence). There is C >0 and a > 0 s. t. ||zn, — z|| < Chy.

iii) (Equi-uniform data convergence). Dy, — D uniformly and py < Chy;, tp < Chj,.
Then,

zk.h, — 2|| < Chy, and, in particular, zy p, — z.

Proof. By finite-element convergence and equi-transversality,

te + Atk + pk)
1— A

and the claim follows by the equi-uniform convergence of the data. ]

+ ChY,

|2k h, — 2l < W2k,ne — 20 || + |20, — 2] <

OCTOBER 10-14, 2022 . CISM
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Model-free Data-Driven finite-elements

—>|

— 2
Rl(lﬂ/} gﬁz
°U TN

E as

< 60

— 15 —»

i
L

Isometric view

Sketch of thin dog-bone tensile

specimen loaded in tension.
The thickness of the sample is 1mm,
plane stress is assumed.

of simulation set-up in 3D
consisting of two rigid pins
and the tensile specimen

NEEEEE A EEEESNEEEEESEEEEEEEEEEE

NS NN EEEEEEEEEEEEEEE

T T T T T TTTTIETTT

TTTTTY

T
LT

48%a'u

T 7T
|

T [ 1T AEARANARARAREANARENEEEEASEaanm) T

Coarse mesh with 811 hexes, h 1mm Fine mesh with 6428 hexes, h 0.5mm
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Model-free Data-Driven finite-elements

10*

Distance to data set

10?

E = == = = Course Mesh

_ Fine Mesh

12° pts

3 24% pts

48° pts

3 96° pis

192° pts

E—.u...|...|...|...|...|...|...|...|
2 4 6 8 10 12 14 16 18

Iterations

RMS Percent Error (%)

— —8— — Course Stress (Log Slope: -0.902)

B — —8— — Course Strain (Log Slope: -1.067)
——— Fine Stress  (Log Slope: -0.910)
10" —— Fine Strain (Log Slope: -1.060)
10°=
10-1 | | | ' | ] | 'IIIIlIIII'IIIIlIIII'
10 50 100 200 300

(Number of Data Points)"?

Convergence of fixed-point solver:

OCTOBER 10-14,2022 - CISM

Each iteration requires two back-
substitutions for standard linear
systems and one material data
search/member

Convergence with respect to
material data set,
uniformly sampled cube in

(011,022, 012) Space

T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.




INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Model-free Data-Driven finite-elements - Rubber sealing

e Application: Rubber sealing
e Sealing for doors, windows
e Self adhesive, loaded by pressure

<<

e Open-cell foam
e isotropic material A
. >0
e 3D computation 2y,

e Microscopic data generation:
linear/non-linear regime

OCTOBER 10-14, 2022 - CISM T.F. Korzeniowski and K. Weinberg, CMAME, 400 (2022) 115487.
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Model-free Data-Driven finite-elements - Rubber sealing

Data sets: D = {E?j — 0'3'} or D= *[..F'1 — Pz} or D= {Cz — Sz}
1. apply deformation

2. compute RVE and determine average stress

3. collect data pairs

e (Case D: non-linear, isotropic

e superpose 6 different loading scenarios (unit loads)

OCTOBER 10-14, 2022 - CISM T.F. Korzeniowski and K. Weinberg, CMAME, 400 (2022) 115487.
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Model-free Data-Driven finite-elements - Rubber sealing

1. step

e Cauchy stress distribution (vertical)
e Start with a coarse level of data

first data input
o Identify data points of interest
e Do additional RVE calculations Microscale -4 6., ... step
e Redo computation at finer level till TOL L a4
information Macroscale

L] . .
.o
N P
t L
. L]

. of?
lx!tit .

e Shear stress at level 1 and level 4 Microscale .
l . I ‘ -500

OcTOBER 10-14,2022 - CISM T.F. Korzeniowski and K. Weinberg, CMAME, 400 (2022) 115487.
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to be continued...
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