

universität**bonn**

Data-Driven Mechanics: Constitutive Model-Free Approach

$$\inf_{y \in D} \inf_{z \in E} ||y - z|| = \inf_{z \in E} \inf_{y \in D} ||y - z||$$

Michael Ortiz – Lecture 2 California Institute of Technology and Rheinische Friedrich-Wilhelms Universität Bonn

Centre International des Sciences Mécaniques (CSIM) Udine (Italy), October 10-14, 2022

The anatomy of a field theory

• Scientific computing deals with the *field theories* of physics.

Field	Potential	Conservation	Material law
Gravitation	$g = -\nabla \phi$	$\nabla \cdot f + 4\pi \rho = 0$	f = g/G (Newton)
Electrostatics	$E = -\nabla V$	$\nabla \cdot D = 4\pi \rho$	$D = \epsilon E$
Electromagnetics	$B = \nabla \times A$	$\nabla \times H = J$	$H = B/\mu$
Diffusion	$g = -\nabla c$	$\nabla \cdot J + s = 0$	J = Dg (Fick)
Heat transfer	$g = -\nabla T$	$\nabla \cdot J + s = 0$	$J = \kappa g$ (Fourier)
Elasticity	$\epsilon = \operatorname{sym} \nabla u$	$\nabla \cdot \sigma + f = 0$	$\sigma = \mathbb{C} \epsilon \; (Hooke)$
General	$\epsilon = \delta u$	$\partial \sigma + f = 0$??

- Field equations are exactly known, material law is determined from data!
 - Engineering predictions?
 - Mathematical solutions?
 - Numerical approximations?

Example: Elastic bar

- Phase space, $Z = \{(\epsilon, \sigma)\}.$
- ullet Note (ϵ, σ) work-conjugate
- ullet Dimension of Z is even
- Compatibility: $\epsilon = u/L$
- Equilibrium: $\sigma A = k(u_0 u)$
- Eliminate u: $\sigma A = k(u_0 \epsilon L)$

Definition (Constraint set)

The constraint set is the affine subspace of Z containing all admissible states (ϵ, σ) satisfying compatibility and equilibrium:

$$E = \{(\epsilon, \sigma) : \sigma A = k(u_0 - \epsilon L)\}\$$

Definition (Material data set)

The material data set D is the subset of Z containing all the observed states (ϵ, σ) .

Definition (Classical solution)

The classical solution is the intersection $D \cap E$, i. e., the set of all material states that are admissible.

Example: Elastic bar

Example: Elastic bar

- ullet Suppose that D= point set
- \bullet Then, $D \cap E = \emptyset$
- No classical solutions! Must extend the concept of solution, classical approach is too rigid

Definition (Data-Driven solution)

An admissible state $z \in E$ is a Data-Driven solution if it minimizes the distance to the material data set D,

$$dist(z, D) \to min!, \quad z \in E$$

- Recall: $dist^{2}(z, D) = \min_{y \in D} ||y z||^{2}$
- Data-Driven problem:

$$\min_{z \in E} \min_{y \in D} \left\| y - z \right\|^2 = \min_{y \in D} \min_{z \in E} \left\| y - z \right\|^2$$

ullet Find material state $y\in D$ and admissible state $z\in E$ closest to each other.

Definition (Data-Driven Problem)

Given phase space $Z=\mathbb{R}^N imes\mathbb{R}^N$,

- i) $D = \{ \text{material data} \} \subset Z$,
- ii) $E = \{ \text{field equations} \} \subset Z$,

Find: $\operatorname{argmin}\{||y - z||^2 : y \in D, z \in E\}$

• Discussion:

- Phase space Z determined by field equations (field-theory dependent)
- Fundamental data (model-independent) = Points in phase space
- No material modeling, no loss of information, no biasing of the data
- DD problem generalizes and subsumes classical field-theoretical problems

• Outlook:

- Extensions to infinite dimensions? (e.g., linear elasticity)
- Extensions to geometrically-nonlinear problems? (e.g., finite elasticity)
- Well-posedness of Data-Driven problems? Convergence with respect to data?
- Solvers? Computational performance? Scaling?

Structural/solid mechanics

- Finite-dimensional solids/structures
- m structural members or Gauss points
- Local phase spaces: For $e=1,\ldots,m$, $Z_e=\{z_e:=(\epsilon_e,\sigma_e)\}=\mathbb{R}^d\times\mathbb{R}^d$
- Global phase space: With N=md, $Z=\{z:=(\epsilon,\sigma)=(\epsilon_e,\sigma_e)_{e=1}^m\}=\mathbb{R}^N\times\mathbb{R}^N$
- Metric: With $\mathbb{C}_e^T = \mathbb{C}_e$, $\mathbb{C}_e > 0$, $w_e > 0$, $||z||^2 = \sum_{e=1}^m w_e (\mathbb{C}_e \epsilon_e \cdot \epsilon_e + \mathbb{C}_e^{-1} \sigma_e \cdot \sigma_e)$.
- Compatibility, equilibrium: For $e=1,\ldots,m$, $\epsilon_e=B_eu+g_e$, $\sum_{e=1}^m w_e B_e^T \sigma_e=f$

Structural/solid mechanics

• Finite-dimensional solids/structures

• Finite-element interpolation:

$$\mathbf{u} = \sum \mathbf{N}_i \mathbf{a}_i$$

• Strains at Gauss quadrature points:

$$\mathbf{\varepsilon} = \left\{ \begin{array}{l} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{array} \right\} = \begin{bmatrix} \frac{\partial}{\partial x}, & 0 \\ 0, & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y}, & \frac{\partial}{\partial x} \end{bmatrix} \left\{ \begin{array}{l} u \\ v \end{array} \right\} = \mathbf{S} \mathbf{u} \quad \Rightarrow \quad \mathbf{B}_{i} = \mathbf{S} N_{i} = \begin{bmatrix} \frac{\partial N_{i}}{\partial x}, & 0 \\ 0, & \frac{\partial N_{i}}{\partial y} \\ \frac{\partial N_{i}}{\partial y}, & \frac{\partial N_{i}}{\partial x} \end{bmatrix}$$

Structural/solid mechanics

- Finite-dimensional solids/structures
- m structural members or Gauss points
- Local phase spaces: For $e=1,\ldots,m$, $Z_e=\{z_e:=(\epsilon_e,\sigma_e)\}=\mathbb{R}^d\times\mathbb{R}^d$
- Global phase space: With N=md, $Z=\{z:=(\epsilon,\sigma)=(\epsilon_e,\sigma_e)_{e=1}^m\}=\mathbb{R}^N\times\mathbb{R}^N$
- Metric: With $\mathbb{C}_e^T = \mathbb{C}_e$, $\mathbb{C}_e > 0$, $w_e > 0$, $||z||^2 = \sum_{e=1}^m w_e (\mathbb{C}_e \epsilon_e \cdot \epsilon_e + \mathbb{C}_e^{-1} \sigma_e \cdot \sigma_e)$.
- Compatibility, equilibrium: For e = 1, ..., m, $\epsilon_e = B_e u + g_e$, $\sum_{e=1}^m w_e B_e^T \sigma_e = f$
- Admissible space: Given $f \in \mathbb{R}^n$, $g \in \mathbb{R}^N$, $E = \{(\epsilon, \sigma) \in Z : \epsilon = Bu + g, \ B^T W \sigma = f\}$
- Local material sets: $D_e \subset Z_e$, $e = 1, \ldots, m$,
- Global material set: $D = D_1 \times \cdots \times D_m \subset Z$
- Data-Driven problem: Given Z, D and E, find $\operatorname{argmin}\{\|y-z\|^2,\ y\in D,\ z\in E\}$

Field-theoretical structure of constraint spaces

Definition (Constraint set)

The constraint subspace E is the set of points $(\epsilon, \sigma) \in Z = \mathbb{R}^N \times \mathbb{R}^N$ such that

$$\epsilon = Bu + g, \quad B^T \sigma = f,$$
 (field eqs)

with $B \in L(\mathbb{R}^n, \mathbb{R}^N)$, $n \leq N$, $f \in \mathbb{R}^n$, $g \in \mathbb{R}^N$.

Theorem (Constraint sets)

Let $Z = \mathbb{R}^N \times \mathbb{R}^N$ and $B \in L(\mathbb{R}^n, \mathbb{R}^N)$, $n \leq N$. Then,

i) The system of equations (field eqs) has solutions (u,ϵ,σ) if and only if

$$f^T v = 0, \quad \forall v \in \text{Ker}(B).$$

ii) The solutions of (field eqs) satisfy the work-energy identity

$$f^T u = \sigma^T (\epsilon - g).$$

iii) If condition (i) is satisfied, then the set E of all solutions of (field eqs) is an affine subspace of Z of dimension N and co-dimension N.

Field-theoretical structure of constraint spaces

Proof.

- i) The equations in (field eqs) are decoupled. The first is always soluble. By the Fredholm alternative theorem of linear algebra, the second is soluble iff (i) holds.
- ii) Suppose that (i) holds and let (u, ϵ, σ) be a solution of (field eqs). Then,

$$f^T u = \sigma^T B u = \sigma^T (\epsilon - g).$$

iii) If (i) holds, then there exists $\sigma_0 \in \mathbb{R}^N$ such that $f = B^T \sigma_0$, and the affine space E defined by (field eqs) is a translate of the linear subspace E_0 defined by the homogeneous constraints

$$\epsilon = Bu, \quad B^T \sigma = 0,$$
 (hom field eqs)

Evidently, $E_0 = E_{\epsilon} \times E_{\sigma}$, where E_{ϵ} is the linear subspace defined by the first of (hom field eqs) and E_{σ} is the linear subspace defined by the second. Therefore, we have

$$\dim(E_0) = \dim(E_{\epsilon}) + \dim(E_{\sigma}) = \dim(\operatorname{Im}(B)) + \dim(\operatorname{Ker}(B^T)) = N.$$

Since $Z = \mathbb{R}^N \times \mathbb{R}^N$, it follows that the constraint set E is an affine subspace of Z of dimension N and co-dimension N.

Field-theoretical structure of constraint spaces

Example

- m = 6, d = 1, N = md = 6.
- Suppose $f = 0 \Rightarrow B^T \sigma = 0$.
- From A: $\sigma_{AB} = \sigma_{AB} = \sigma_{AB} = 0$.
- From B, C, D: $\sigma_{\rm BC} = \sigma_{\rm CD} = \sigma_{\rm DB} = 0$.
- Together: $\operatorname{Ker}(B^T) = 0 \Rightarrow \operatorname{Im}(B) = \mathbb{R}^6$,
- $\dim(E) = \dim \operatorname{Ker}(B^T) + \dim \operatorname{Im}(B) = N.$

Example

- m = 7, d = 1, N = md = 7.
- Suppose $f = 0 \Rightarrow B^T \sigma = 0$. Fix σ_{AE} .
- From $A \Rightarrow \{\sigma_{AB}, \sigma_{AB}, \sigma_{AB}\}.$
- From B, C, $D \Rightarrow \{\sigma_{BC}, \sigma_{CD}, \sigma_{DB}\}$.
- Together: $\operatorname{Ker}(B^T) = \mathbb{R} \Rightarrow \operatorname{Im}(B) = \mathbb{R}^6$,
- $\dim(E) = \dim \operatorname{Ker}(B^T) + \dim \operatorname{Im}(B) = N$.

Theorem (Existence of DD solutions)

Let $Z=\mathbb{R}^N \times \mathbb{R}^N$, E an affine subspace of Z and D a non-empty closed subset of Z. Suppose that the transversality condition

$$||y - z|| \ge c(||y|| + ||z||) - b$$

holds for all $y \in D$, $z \in E$, with constants c > 0 and $b \ge 0$. Then, the DD problem has at least one solution.

- ullet Transversality between D and E is a necessary condition for existence.
- ullet Transversality requires D and E to increasingly separate from each other:

$$||y-z|| \to +\infty$$
 if: $||y-y_0|| \to +\infty$, or $||z-z_0|| \to +\infty$.

• Transversality condition makes sense for general (non-manifold) material data sets, including point sets.

Proof.

Let $(y_h,z_h)\subset D\times E$ be a minimizing sequence. By transversality, (y_h) and (z_h) are bounded in Z. Passing to subsequences, there is $(y,z)\in Z\times Z$ such that $(y_h,z_h)\to (y,z)$. By the closedness of E and D, it follows that $(y,z)\in D\times E$. By the continuity of the norm,

$$\inf_{(y',z')\in D\times E} \|y'-z'\|^2 \le \|y-z\|^2 = \lim_{h\to\infty} \|y_h-z_h\|^2 = \inf_{(y',z')\in D\times E} \|y'-z'\|^2,$$

and (y, z) is a DD solution.

Classical solutions are recovered from DD solutions

Lemma (Elastic structures, transversality)

Let $Z = \mathbb{R}^N \times \mathbb{R}^N$, E affine subspace of Z, $\dim(E) = N$, $D = \{\sigma = \mathbb{C}\epsilon\}$. Suppose that $B^T \mathbb{C}B > 0$. Then, E and D are transversal.

Proof. (reading assignment)

Recall $E_0 = \operatorname{Im}(B) \times \operatorname{Ker}(B^T)$. We claim that there is c > 0 such that

$$||y - z'|| \ge c(||y|| + ||z'||), \quad \forall y \in D, \ z' \in E_0.$$

With $z'=(\epsilon',\sigma')$, $\epsilon'\in {\rm Im}(B)$ and $\sigma'\in {\rm Ker}(B^T)$, we have

$$||y - z'||^2 \ge \operatorname{dist}^2(z', D) = \frac{1}{2}\mathbb{C}^{-1}(\sigma' - \mathbb{C}\epsilon') \cdot (\sigma' - \mathbb{C}\epsilon').$$

By the orthogonality: $||y-z'||^2 \ge \frac12 \mathbb{C}^{-1} \sigma' \cdot \sigma' + \frac12 \mathbb{C} \epsilon' \cdot \epsilon' = \frac12 ||z'||^2$, and

$$||y - z'|| \ge \frac{1}{2}||y - z'|| + \frac{1}{2}\operatorname{dist}(z', D) \ge \frac{1}{2}||y - z'|| + \frac{1}{2\sqrt{2}}||z'|| \ge c(||y|| + ||z'||).$$

Let z_0 be the unique elastic solution, $y \in D$, $z \in E$, $z' = z - z_0 \in E_0$. Then,

$$||z'|| \ge ||z|| - ||z_0||$$
 and $||y - z|| \ge c(||y|| + ||z||) - c||z_0||$.

Classical solutions are recovered from DD solutions

Theorem (Elastic structures)

Let $Z = \mathbb{R}^N \times \mathbb{R}^N$, E affine subspace of Z, $\dim(E) = N$, $D = \{\sigma = \mathbb{C}\epsilon\}$, $B^T \mathbb{C}B > 0$. Then, there is a unique DD solution such that $\sigma = \mathbb{C}\epsilon$.

Proof. (reading assignment)

By the transversality lemma and the existence theorem, it follows that there are DD solutions. Let $z=(\epsilon,\sigma)\in E$ be a DD solution. By minimality of the distance,

$$\frac{1}{2}\mathbb{C}^{-1}(\sigma - \mathbb{C}\epsilon) \cdot (\sigma' - \mathbb{C}\epsilon') = 0$$
, for all $z' = (\epsilon', \sigma') \in E_0$.

Choosing $\epsilon' = 0$ and $\sigma' \in \text{Ker}(B^T)$: $\mathbb{C}^{-1}\sigma - \epsilon \in \text{Ker}(B^T)^{\perp} = \text{Im}(B)$.

Hence, there is $u \in \mathbb{R}^n$ such that: $\mathbb{C}^{-1}\sigma - \epsilon = Bu$.

Choosing $\sigma' = 0$ and $\epsilon' \in \operatorname{Im}(B)$: $\sigma - \mathbb{C}\epsilon \in \operatorname{Im}(B)^{\perp} = \operatorname{Ker}(B^T)$.

Hence: $B^T(\sigma - \mathbb{C}\epsilon) = B^T\mathbb{C}Bu = 0 \Rightarrow u = 0$, and $\sigma = \mathbb{C}\epsilon$.

To prove uniqueness, let z' and z'' be two DD solutions. Then, by linearity, $z'-z''\in D\cap E_0$ is a DD solution with zero forcing. It follows that

$$||z' - z''||^2 = 2 \operatorname{dist}^2(z' - z'', D) = 0 \Rightarrow z' = z''.$$

Theorem

Let (D_h) be a sequence of subsets of Z, D a subset of Z and E an affine subspace. Let z be an isolated point of $D\cap E$ and let $y_h,z_h\in Z$ be such that

$$(y_h, z_h) \in \operatorname{argmin}\{|y' - z'|, y' \in D_h, z' \in E\}.$$

Suppose that:

- i) There is a sequence $\rho_h \downarrow 0$ such that: $\operatorname{dist}(y, D_h) \leq \rho_h$, $\forall y \in D$.
- ii) There is a sequence $t_h \downarrow 0$ such that: $\operatorname{dist}(y, D) \leq t_h$, $\forall y \in D_h$.
- iii) (Transversality) There is a constant $0 \le \lambda < 1$ s. t., for all $y \in D$,

$$||P_E y - z|| \le \lambda ||y - z||,$$

Then:
$$||z_h-z|| \leq rac{t_h + \lambda(t_h+
ho_h)}{1-\lambda}$$
 and $\lim_{h o\infty} ||z_h-z|| = 0.$

Proof. (reading assignment)

By assumption (i), we can find $\xi_h \in D_h$ such that $\|\xi_h - z\| \le \rho_h$

By optimality: $\operatorname{dist}(y_h, E) \leq \operatorname{dist}(\xi_h, E)$

Then, we have: $||y_h - z_h|| = \operatorname{dist}(y_h, E) \le \operatorname{dist}(\xi_h, E) \le ||\xi_h - z|| \le \rho_h$

By assumption (ii), we can find $\eta_h \in D$ such that: $\|y_h - \eta_h\| \le t_h$

By the triangle inequality: $||z_h - z|| \le ||z_h - P_E \eta_h|| + ||P_E \eta_h - z||$

By the contractivity of projections:

$$||z_h - P_E \eta_h|| = ||P_E y_h - P_E \eta_h|| = ||P_E (y_h - \eta_h)|| \le ||y_h - \eta_h|| \le t_h$$

By transversality, with $0 \le \lambda < 1$: $||P_E \eta_h - z|| \le \lambda ||\eta_h - z||$

Triangulating again: $\|\eta_h - z\| \le \|\eta_h - y_h\| + \|y_h - z_h\| + \|z_h - z\|$

Collecting estimates: $||z_h - z|| \le t_h + \lambda(t_h + \rho_h + ||z_h - z||)$

T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.

Sequence of uniformly converging data sets (increasing number of points, decreasing scatter)

Convergence with respect to material data set towards solution of limiting problem (nonlinear elasticity)

Solvers: Fixed-point iteration

- Find: $\operatorname{argmin}\{\operatorname{dist}(z,D),\ z\in E\}$
- Solver: $z^{(k)} = P_D \circ P_E z^{(k-1)}$
 - $P_D := \text{closest-point projection onto } D$.
 - $P_E := \text{closest-point projection onto } E$.

- Implementation?
- Convergence?

Fixed-point iteration, manifold data set D

Fixed-point iteration, point data set D

Solvers: Fixed-point iteration

- Degrees of freedom: $(u_i)_{i=1}^n$
- Phase space: $Z = \{(\epsilon_e, \sigma_e)_{e=1}^m\}$
- Norm: $\|(\epsilon,\sigma)\|^2 = \sum_{e=1}^m w_e \left(\mathbb{C}_e \epsilon_e^2 + \mathbb{C}_e^{-1} \sigma_e^2\right)$
- Constraint set: $E = \{ \epsilon = Bu, B^T W \sigma = f \}$
- Data-Driven problem:

$$\min_{(\epsilon',\sigma')\in D} \left(\min_{(\epsilon,\sigma)\in E} \left\| (\epsilon - \epsilon', \sigma - \sigma') \right\|^2 \right)$$

• Projection to E (inner minimization at fixed (ϵ', σ')): i) Enforce compatibility directly by writing $\epsilon = Bu$; ii) Enforce equilibrium through a Lagrange multiplier v,

$$\delta \Big(\| (Bu - \epsilon', \sigma - \sigma') \|^2 - (B^T W \sigma - f) \cdot v \Big) = 0$$

- Euler-Lagrange equations: $(B^T \mathbb{C} WB)u = B^T \mathbb{C} \epsilon', \quad (B^T \mathbb{C} WB)v = f B^T \sigma'.$
- State update: $\epsilon = Bu; \quad \sigma = \sigma' + \mathbb{C}Bv.$
- Two standard linear problems! (regardless of material behavior).
- DD leads to (material-independent) standardization of solvers.

Solvers: Fixed-point iteration

- Degrees of freedom: $(u_i)_{i=1}^n$
- Phase space: $Z = \{(\epsilon_e, \sigma_e)_{e=1}^m\}$
- Norm: $\|(\epsilon,\sigma)\|^2 = \sum_{e=1}^m w_e \left(\mathbb{C}_e \epsilon_e^2 + \mathbb{C}_e^{-1} \sigma_e^2\right)$
- Constraint set: $E = \{ \epsilon = Bu, B^T W \sigma = f \}$
- Data-Driven problem:

$$\min_{(\epsilon', \sigma') \in D} \left(\min_{(\epsilon, \sigma) \in E} \left\| \left(\epsilon - \epsilon', \sigma - \sigma' \right) \right\|^2 \right)$$

- ullet Outer minimization: Projection onto (closest point in the) material data set D
- Fast searching algorithm
- Requires data structures
- 'Learning' structure of D
- Set-oriented (lossless) ML!

cf. S. Reese's lecture! Wednesday 12, 14:00-14:45

Solvers: Fixed-point iteration – Using commercial software

E. Prume, L. Stainier, M. Ortiz, and S. Reese, Proc. Appl. Math. Mech., 5 October 2022.

Solvers: Fixed-point iteration – **Data flow**

Fixed-point iteration

Theorem

Let $Z = \mathbb{R}^N \times \mathbb{R}^N$, D and E transversal affine subspaces of dimension N. Then, the fixed-point iteration converges to the unique solution of the Data-Driven problem.

Fixed-point iteration, affine data set D

Fixed-point iteration, point data set D

Fixed-point iteration

Proof.

By translation, D, $E \equiv$ linear spaces. Consider the fixed-point iteration

$$(y_k, z_k) \mapsto (y_{k+1}, z_{k+1}) = (P_D z_k, P_E y_k).$$

By the orthogonality of the projections,

$$||z_k||^2 = ||y_{k+1}||^2 + ||y_{k+1} - z_k||^2, \quad ||y_k||^2 = ||z_{k+1}||^2 + ||z_{k+1} - y_k||^2.$$

By transversality, for some c > 0,

$$||y_{k+1} - z_k||^2 + ||z_{k+1} - y_k||^2 \ge c(||y_{k+1}||^2 + ||z_{k+1}||^2) + c(||y_k||^2 + ||z_k||^2).$$

Combining, rearranging,

$$||y_{k+1}||^2 + ||z_{k+1}||^2 \le \frac{1-c}{1+c}(||y_k||^2 + ||z_k||^2).$$

Hence, $(y_k, z_k) \mapsto (y_{k+1}, z_{k+1})$ is a contraction and $(y_k, z_k) \to (0, 0)$.

Fixed-point iteration

Theorem

Let E be an affine subspace of Z and (D_h) an equi-transversal sequence of point subsets of Z converging uniformly to D. Let (y_h, z_h) be a fixed point of $(y_k, z_k) \mapsto (P_{D_h} z_k, P_E y_h)$. Then, (y_h, z_h) converges to a solution (y, z) of the D Data-Driven problem.

Proof.

If (y_h,z_h) is a fixed point of the iteration, $y_h=P_{D_h}z_h$ and $z_h=P_Ey_h$. By uniform convergence, $\|y_h-z_h\|\to 0$. By equi-transversality, $y_h\to y\in D$, $z_h\to z\in E$ and y=z, hence a solution of the D Data-Driven problem.

T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.

Sequence of uniformly converging data sets (increasing number of points, decreasing scatter)

Convergence of fixed-point solver:

Each iteration requires two backsubstitutions for standard linear systems and one material data search/member

T. Kirchdoerfer and M. Ortiz, CMAME, 304 (2016) 81-101.

- DD FE calculations
- Linear elasticity
- Perforated plate
- Synthetic data

R. Eggersmann, S. Reese RWTH Aachen (2019).

cf. S. Reese's lecture! Wednesday 12, 14:45-15:30

- DD FE calculations
- Finite elasticity
- Twisted elastic rod
- Random Green-S. Venant
- 10,000,000 data points

A. Platzer, Doctoral Thesis, École Centrale de Nantes, 2020.

cf. L. Stainier's lecture! Thursday 13, 11:00-11:45

- Sequence of FE discretizations of size h_k .
- Sequence of admissible sets (E_{h_k}) .
- Sequence of material-data sets (D_k) .

- $z \equiv$ solution of (D, E)-problem.
- $z_{h_k} \equiv \text{solution of } (D, E_{h_k}) \text{-problem}.$
- $z_{k,h_k} \equiv$ solution of (D_k, E_{h_k}) -problem.

Theorem Assume:

i) (Equi-transversality) There is $0 \le \lambda < 1$ s. t., $\|P_{E_{h_k}}y - z\| \le \lambda \|y - z\|, \quad \text{for all } y \in D_k,$

- ii) (Finite-element convergence). There is C>0 and $\alpha>0$ s. t. $\|z_{h_k}-z\|\leq Ch_k^{\alpha}$.
- iii) (Equi-uniform data convergence). $D_k \to D$ uniformly and $\rho_k < Ch_k^{\alpha}, \ t_k < Ch_k^{\alpha}.$

Then, $||z_{k,h_k} - z|| \le Ch_k^{\alpha}$ and, in particular, $z_{k,h_k} \to z$.

Proof. By finite-element convergence and equi-transversality,

$$||z_{k,h_k} - z|| \le ||z_{k,h_k} - z_{h_k}|| + ||z_{h_k} - z|| \le \frac{t_k + \lambda(t_k + \rho_k)}{1 - \lambda} + Ch_k^{\alpha},$$

and the claim follows by the equi-uniform convergence of the data.

Sketch of thin dog-bone tensile specimen loaded in tension. The thickness of the sample is 1mm, plane stress is assumed.

of simulation set-up in 3D consisting of two rigid pins and the tensile specimen

Coarse mesh with 811 hexes, h 1mm

Fine mesh with 6428 hexes, h 0.5mm

Convergence of fixed-point solver:

Each iteration requires two backsubstitutions for standard linear systems and one material data search/member

Convergence with respect to material data set, uniformly sampled cube in $(\sigma_{11}, \sigma_{22}, \sigma_{12})$ space

T. Kirchdoerfer and M. Ortiz, *CMAME*, **304** (2016) 81-101.

Model-free Data-Driven finite-elements - Rubber sealing

T.F. Korzeniowski and K. Weinberg, CMAME, 400 (2022) 115487.

Model-free Data-Driven finite-elements - Rubber sealing

- Data sets: $\mathcal{D} = \{ m{\epsilon}_i m{\sigma}_i \} \ ext{or} \ \mathcal{D} = \{ m{F}_i m{P}_i \} \ ext{or} \ \mathcal{D} = \{ m{C}_i m{S}_i \}$
- 1. apply deformation
- 2. compute RVE and determine average stress
- 3. collect data pairs
- Case D: non-linear, isotropic
- superpose 6 different loading scenarios (unit loads)

T.F. Korzeniowski and K. Weinberg, CMAME, 400 (2022) 115487.

Model-free Data-Driven finite-elements - Rubber sealing

Cauchy stress distribution (vertical)

1. step

T.F. Korzeniowski and K. Weinberg, CMAME, 400 (2022) 115487.

to be continued...