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INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Model-Free Data-Driven inference — Motivation

® Recall: Deterministic Data-Driven problems are defined by:
— A phase space Z of dimension 2N
— A material data set D in the form of a graph (manifold) of dimension N
— An admissible set E in the form of an affine subspace of dimension N
The set of classical solutions of the Data-Driven problem is DMNE (possibly @)
® But: Problems can be stochastic in nature due to:
— Observational error (scatter) but deterministic true material law

OCTOBER 10-14, 2022 - CISM
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Model-Free Data-Driven inference — Motivation
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Post necking behavior of non-
irradiated and irradiated micro- True stress—true strain curves generated by
tensile specimens. (a,b) Second- XRD/DIC technique for irradiated and non-
ary electron images. (c,d) Electron irradiated SA-508-4N ferritic steel specimens.
backscattered diffraction (EBSD) Solid lines depict fitted curves assuming power-
orientation maps law hardening.

OCTOBER 10-14, 2022 . CISM AD Smlth et al., SCl Rep., (2020) 105353
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Model-Free Data-Driven inference — Motivation
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Sequence of material data sets converging uniformly (increasing number of points,
decreasing scatter) to a limiting deterministic material law.
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Model-Free Data-Driven inference — Motivation

® Recall: Deterministic Data-Driven problems are defined by:

— A phase space Z of dimension 2N

— A material data set D in the form of a graph (manifold) of dimension N

— An admissible set E in the for of an affine subspace of dimension N

The set of classical solutions of the Data-Driven problem is DNE (possibly @)

® PBut: Problems can be stochastic in nature due to:

— Observational error (scatter) but deterministic true material law

— Intrinsic randomness of the material behavior (e.g., strength)
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Model-Free Data-Driven inference — Motivation

Spruce (Picea abies) tensile strength Graphite tensile strength

Coal seam compressive strength Aluminum foam tensile strength
Experimental strength data and Largest Extreme Value Distribution (LEVD) fit.

E. Gumbel, Statistics of Extremes, Columbia University Press, New York, 1958.
ocToser 10-14, 2022 . cism  A.P. Pagnoncelli, A. Tridello and D.S. Paolino, Mater. Des,, 195 (2020) 109052.
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Model-Free Data-Driven inference — Motivation

o o o o
DO Dl o Dh — D

Sequence of material data sets converging uniformly (increasing number of points,
decreasing scatter) to a limiting deterministic material law.
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Sequence of discrete point-data sets converging weakly
(in the sense of ‘local averages’) to a limiting material likelihood density.
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Model-Free Data-Driven inference — Motivation

® Recall: Deterministic Data-Driven problems are defined by:

— A phase space Z of dimension 2N

— A material data set D in the form of a graph (manifold) of dimension N
— An admissible set E in the for of an affine subspace of dimension N
The set of classical solutions of the Data-Driven problem is DNE (possibly @)
But: Problems can be stochastic in nature due to:

— Observational error (scatter) but deterministic true material law

— Intrinsic randomness of the material behavior (e.g., strength)

— Stochastic loading, fabrication errors (misfit strains, residual stresses...)
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Model-Free Data-Driven inference — Motivation

Schematic of high-rise building Schematic of floating offshore wind turbine
subjected to strong ground motion subjected to stochastic wave and wind loading
R. Xu and B. Fatahi, G. Park, K.Y. Oh and W. Nam,
Geotext. Geomembr., 46 (2018) 511-528. J. Mar. Sci. Eng., 8 (2020) 876.
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Model-Free Data-Driven inference — Motivation

® Recall: Deterministic Data-Driven problems are defined by:
— A phase space Z of dimension 2N
— A material data set D in the form of a graph (manifold) of dimension N
— An admissible set E in the for of an affine subspace of dimension N

The set of classical solutions of the Data-Driven problem is DNE (possibly @)
But: Problems can be stochastic in nature due to:

— Observational error (scatter) but deterministic true material law

— Intrinsic randomness of the material behavior (e.g., strength)

— Stochastic loading, fabrication errors (misfit strains, residual stresses...)
® Conventional treatment: Stipulate a material law of the form:

o= f(e)+§ { f(€) = “forward’ material model

o = stochastic stress
® Need to model:

— Forward function f(€), e.g., neural networks + regression _
. . _ . Modeling galore!
— Prior distribution P(9), e.g., Gaussian distribution

® Instead: Draw inferences directly from the data, without recourse to
modeling (Model-Free Data-Driven inference!). How?

OCTOBER 10-14, 2022 - CISM
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Example: Elastic bar

e Phase space, Z = {(¢,0)} = R?.
e Deterministic admissible space,

E(ug) = {(e,0) : A =k(up—€L)} .

Definition (Physical likelihood)

With z = (¢,0), Lg(z) = likelihood that
z be physically admissible, in the sense of
compatibility and equilibrium with random
loads. Then, dug(z) = Lg(z)dz is the
corresponding likelihood measure.

° Likelihood of a continuous function f €
Z) (quantity of interest): ug(f) =

/f )LE(2 dz—/f Jdug(z

Example (Random actuation)
Assume ug random: pug(f) =

/]R(/E(uo)f(z) d?—Ll(z))Lo(uO)duO,

OcCTOBER 10-14, 2022 - CISM
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Example: Elastic bar

e Phase space, Z = {(¢,0)} = R®.
Definition (Material likelihood)

With y = (e,0), Lp(y) = likelihood that
y be material, i. e., that it be observed in
the laboratory. Then, dup(y) = Lp(y) dy
is the corresponding material measure.

° LikeIihood of a continuous function f S
Z) (quantity of interest): up(f

/f )Lp(y dy—/f ) dup (y

Example (Sliding Gaussian)
With y = (¢, 0), stipulate

Lp(y) = exp (—;—LC (U—Ce)2>,

where s = transversal standard deviation.

OCTOBER 10-14, 2022 - CISM
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Example: Elastic bar

e Phase space, Z = {(¢,0)} = R%.

e Suppose that we know the priors:
o Lp(y) = material likelihood function.
® Lg(z) = physical likelihood function.

Definition (Classical inference)

The classical posterior likelihood function
L(z) = Lp(x)LEg(x) is the likelihood of y
being material and z being physical
conditioned to x = y = z. Then,

du(x) = L(x) dx is the corresponding
posterior likelihood measure.

e [(x) expresses the likelihood of = being
both material and physical.

° Likelihood of a continuous function f S
Z) (quantity of interest): u(f

t/f dx—/df ) dp(x

OCTOBER 10-14, 2022 - CISM
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. A k U
Example: Elastic bar i AN
| I |
g (o) g
€ € €
a (o) g
€ €

LD LE L = LD LE'
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The classical inference paradigm o

e Phase space, Z = {(¢,0)} = RY x RY.

e Prior and posterior likelihoods:

o Lp(y) = material likelihood. Lp

® Lg(z) = physical likelihood. €

o L(x) = Lp(z)LE(x) = posterior. o
g

e Maximum-likelihood solution,

™ € argmax L(-).

e Prior and posterior measures:

dup(y) = Lp(y) dy = material.
® dup(z) = Lg(z)dz = physical.
o du(x) = L(x) dr = posterior.

Definition (Intersection of measures)

Given up, pug € M(Z), we denote by
= pup N g the corresponding posterior
measure, i. e., the likelihood of y material, L=LpLg

z physical, conditioned to y = z. .

OGTOBER 10-14, 2022 . CISM Conti, S., F. Hoffmann and M. Ortiz, arXiv:2106.02728 (2021).
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The classical inference paradigm o

e Phase space, Z = {(¢,0)} = RY x R,
e Extension to deterministic loading:
E ={z= (¢,0) € Z, admissible}.

o up = HYN | E = Hausdorff measure.

e Likelihood of f € Cc(Z) admissible: ? k |
/ F(z)dn®N R

e Posterior likelihood of f € Cy(2): L

M

_ / F (@)L (z) dHY ().
E

e Maximum-likelihood solution, o \
E
" € argmax {Lp(x) : v € E} R \'\
e Potential: ¥Yp(z) = —log Lp(x). Then,
" € argmin {¥p(z) : = € E}. L=1LplLg

€
OGTOBER 10-14, 2022 . GISM Conti, S., F. Hoffmann and M. Ortiz, arXiv:2106.02728 (2021).
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The Data-Driven inference paradigm

a

Sequence of discrete point-data sets converging weakly
to a limiting material likelihood density + deterministic loading.

e Suppose that Lp is not known exactly, e Posteriors uj, = up p Npug = 0!
only sampled on point-set sequence (P,). 4 Classical inference breaks down along
e Approximate pp by empirical measures the sequence, (uj) does not approxi-
WD = Z cede, ce > 0. mate the exact posterior u = up Nug.
cep, e Must extend the concept of inference,

e Suppose deter. loads: up = HY | E. classical inference is too rigid! How?

OcToBER 10-14, 2022 - CISM Conti, S., F. Hoffmann and M. Ortiz, arXiv:2106.02728 (2021).
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The Data-Driven inference paradigm

e L sampled on point-set sequence (P},).
e Deterministic loads: up = HY _E.

e Approximate pup by empirical measures -
HD.h = Z cede, c¢ >0,
gepy

—

e Decorrelation: Allow for non-zero likelihood of y # 2z but require likelihood to be
rapidly decreasing with ||y — z|| on an intermediate scale 1/+/0},.

e Variational characterization: Consider trial relaxed posteriors of the form
N,
dvn(y,2) = Y pe(2)doe (y)dHN(z) (<:> v < UD,h X ME)~
Eehy,
e Stipulate that posterior minimizes the regularized Kullback-Leibler divergence:

Gg, (V) Z/ BhHﬁ—ZH +10gp£(£))]0§( ) dz — min!

Echy,

)

Y /
decorrelation cost relative entropy

e Minimizer:  pg(2) = ¢¢ e Prlle==1" = relevance’ of £ to z.

OGTOBER 10-14, 2022 . CISM M. Arroyo and M. Ortiz, Int. J. Numer. Methods Eng., 65 (2006) 2167-2202.
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The Data-Driven inference paradigm

a

0s5F

e Model-Free Data-Driven inference: Expectation of QOIl f € Cy(Z x Z),

Seep, ¢ [ (& z)e—ﬂhllﬁ—zll2 dHN (z)  Explicit in the data
No modeling of priors!

deph C¢ fE e Pnlle—=I° dHN (2) No modeling of material!

Ep[f] =

e QQuestions:

Convergence of [Ej,[f] — E[f] (weak convergence of posteriors) as:
a) up.n — up (material sampling); b) B, — +00? (annealing).

@ Error bounds? Convergence rate? Optimal annealing rate (8)7

@ Practical implementation? Scope? Numerical performance?
OCTOBER 10-14,2022 - CISM Conti, S., F. Hoffmann and M. Ortiz, arXiv:2106.02728 (2021).
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The Data-Driven inference paradigm

The term ‘annealing’ refers to

Theorem (Annealing convergence) a heat treatment in metallurgy

(Steel sword from Toledo, Spain)
Assume:

i) Regular material likelihood: dup(y) = e~ ®W) gy, & Borel, quadratic growth.
i) Deterministic loading: jup(z) = HY|_E, E N-dimensional affine subspace Z.
iii) Transversality: There exist g > 0, ¢ > 0 and b > 0 such that

Bolly — z|1° + @(y) > C(HyH2 + ||z||2) —b  forallye Z, z € E.
Then:
1) Inference: The posterior measure [ is such that, for every f € Cy(Z X Z),

p(f) :/Z Zf( z) du(y, z / f(&,€)e (f) Explicit!

ii) Error bound for annealing: There is C' > 0 such that ||ug — pllpn < CB™ 2

\ J
|

Annealing error reduces Annealing error
to zero as 3~ Y/2 (in flat norm)

OGTOBER 10-14, 2022 . GISM Conti, S., F. Hoffmann and M. Ortiz, arXiv:4503091 (2022).
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The Data-Driven inference paradigm P/h/

Theorem (Sampling convergence)

Assume annealing convergence, approxima-
tion by point-set samples, deterministic
loading. Assume further that, for every h,
there is a partition A, = {A¢ : £ € Py} of
Z, with§ € Ag and pp(Ag) < oo for every
¢ € P, and every h, and sequences 9y, | 0,
ep, 4 0, s. t. (possibly after tail clipping):

i) Cell mass: |cg — up(A¢)| < 0p pup(Ag).
ii) Cell size: If c¢ > 0, then diam(Ag¢) < ep,.

iii) Annealing: Sequence (Bj,¢3) is bounded.

Then: ||pn,g, — pg, PN < 05}1/2%-

\ J
|

Sampling error
(in flat norm)

Conti, S., F. Hoffmann and M. Ortiz,
arXiv:4503091 (2022).

OCTOBER 10-14, 2022 - CISM
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The Data-Driven inference paradigm

a

0s5F

e Data-Driven inference:

i) Total posterior error: ||jip, g, —
i) Optimal annealing rate: Bp, = 51/2 o 5}71/2 = 50_1/4% .

iii) Optimal convergence rate: ||\up, g, — p||lFN < 2C51/4 1/2.

15k

dephcng (€, 2) e~ BnllE—=|l deN(Z)

S eop e Ty T O

Corollary Assume annealing convergence and sampling convergence. Then:

pllen < C(By" 28,2 + By %en).
1/2

iv) Convergence of likellihood: Ey[f] — E|[f], for all f € Cy(Z x Z),

Optimal

annealing

averages
data on

intermediate

scale!

e Remaining questions: Practical implementation? Scope? Numerical performance?

OCTOBER 10-14, 2022 -
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Maximum-likelihood Data-Driven solution
e Data-Driven posterior likelihood: For z € F,
Ly(z) = Z pe(2) — max! Lp
E€hy,
e Equivalently, posterior potential: For z € E, -
1 NG |
Fy(z) = ——=log Ly (z) — min! \
Bh BTN
e Optimality condition: With z € F,
DFy(z) =z — Z pe(2)§ L E. (EL) L
§€Py al L
e With Pz = orthogonal projection onto FE,
(EL)<:>z:PE( Z pg(z)f). \ -
EEPy FE \'\
e Fixed-point solver: lteration step,
k+1) _ k
kT (Zpg ):gh(z( ). L=LpLg
£EP,

OGTOBER 10-14, 2022 . CISM Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.
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Maximum-likelihood Data-Driven solution

Theorem (Fixed-point solver)
Suppose that, for all z € F,

1 _ 2
5> 2 peBlE—al (A -
¢epy e~ P P

with Zp, = ) ¢ p, Pe(2)€. Then,

|

B, = 125

i) Fy(z) is convex over E.

e € outlier!

i) gn(z) is contractive. \l/\
Proof. o —\ )

(Main idea). By direct calculation, verify

that the annealing condition (AC) implies | F}, « I,

D?Fy,(z) > 0, hence F},(z) convex. |

Contractivity of g;, follows directly from Br =25 \ Bh =5

the convexity of F},(z2). ] B =
Corollary \_\ "

Assume (AC). Then, g3, has a fixed point NG wan

z; = maximum-likelihood solution.
OGTOBER 10-14, 2022 . GISM Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.
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Maximum-likelihood Data-Driven solution

25 ¢

20 F A= 0.50
- A=0.10
15 F A= 0.01

10 F

EN_ 5
N
©
I\\I L II\I\III L \\\\\\\I
10 10° 10°*
Number of Data Points
3D truss test case. Data sets of different Convergence with respect to data-
sizes sampled assuming Gaussian noise set size and annealing rate. Over-
superposed on linear+cubic material law. relaxed annealing schedule:

1
B = -2 Seer, pe P, 50N¢) a5

OGTOBER 10-14, 2022 . CISM Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.
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Maximum-likelihood Data-Driven solution

1E+08

5E+07

Stress (Pa)
o

-5E+07

A =0.50

_1 E+08 | I I | I — I | I — I | I —

-0.006 -0.004 -0.002 0
Strain (m/m)

0.002

3D truss test case. Data sets of different
sizes converging uniformly to
a linear+cubic material law.

10? 10° 10*
Number of Data Points

Convergence with respect to data-
set size and annealing rate. Over-

relaxed annealing schedule:

1
B = -2 Seer, pe P, 50N¢) a5

OCTOBER 10-14, 2022 - CISM

Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.
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Maximum-likelihood Data-Driven solution — Dynamics

/

maximum
likelihood
solver!

3D truss structure shaking under ground motion.
Random data sets generated according to capped normal distribution
centered on the true material curve with standard deviation
In inverse proportion to the square root of the data set size

OCTOBER 10-14, 2022 - CISM T. Kirchdoerfer and M. Ortiz, IINME, 113(11) (2018) 1697-1710.
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Full Data-Driven inference

oe (MPa)

e Wish to compute likelihoods of general QOI f € Cy(Z),

_ D¢ep, ¢ Jp f(2)e OnllE==I" gy N (2) e (%

Enlf] = S cep Ce Jo o PP N (2) Q

e Uncorrelated material points: Lp(z) = []/-; Lp e(ze).

e Independent material point-data sets: P}, = HZLl Py, ¢.

e Then: Likelihood factorizes into local material-point computations,

B fE f(z) H?:l (deeph,e Csee_ﬁe’h”ﬁe—zeIP) d”HN(Z>

Ealsl= m —Benll€e—z |2 gy N
fEHezl(z:geePh,ecﬁee e:hl|Se =z )dH (2)

e Polynomial complexity O(m# P}, 1oc) vs. combinatorial complexity O ((# P 10c)™")

e Remaining implementational challenges:

Computation of fE: Stochastic quadrature, Monte Carlo + population annealing.

Evaluation of Zg . Importance sampling, restricted sums, k-means trees.

EPh,e

OGTOBER 10-14, 2022 . CISM E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022).



INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Full Data-Driven inference — Convergence

L
2L
1
L J
20 ) 3L
P A
100 A
50 /L‘f'x':l"? -
b 0 g
L
50 gt
o
—100 | #5
—1 —-05 0 0.5 1
€ 1072
OCTOBER 10-14, 2022 . CISM

a1

103

104

Three-bar truss with sliding-Gaussian material data.

Computed histograms vs. exact distribution (red) of A

for material data-sets of sizes: a) 103; b) 104; ¢) 10°.

d) Kolmogorov-Smirnov error vs. material data-set size.

E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022).
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Full Data-Driven inference — Convergence

L
T

Three-bar truss,
monotonically
Increasing 4

]

OCTOBER 10-14, 2022 - CISM

2L

4L

y-titanium aluminide alloy, Ti-48Al-2Cr-2Nb,
cumulative probability of tensile strength.
C. Dresbach et al., Latin American J. Solids
Struct., 13 (2016) 2316-2332.

Left: Material likelihood,

Weibull tensile strength.

Right: Typical empirical
point data set sample. Py,

E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022).
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Full Data-Driven inference — Scope

L Material likelihood
non-Gaussian!

No obvious
material law!

Three-bar truss,
monotonically

increasing 4 m P,
2L
i
L | — Multimodal
> > osterior!
2 ) 3L P
P A Failure mode

likelihoods

G inferred!

OGTOBER 10-14, 2022 . CISM E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022).



INTRODUCTION TO MODEL-FREE DATA-DRIVEN COMPUTING - MICHAEL ORTIZ

Full Data-Driven inference — Lightweight space structures

Aim: Propagate 100+ S

uncertainties in - R
material behavior Pr

to structural response,  ° v &#
control aberrations —H0| e
_qo0 |-
1 —05 0 05 1
€ 1072
Modular space telescope structure a) Material data, sliding Gaussian.
In-Space Telescope Assembly b) Posterior distribution of hub displacement.
Robotics (ISTAR) c) Accuracy vs. number of backtracks in
Hogstrom et al., 65th International approximate k-means search.

Astronautical Congress, Toronto, CA: 2014 d) CPU time in seconds on 12-Core AMD

Ryzen 9 3900X computer.
OCTOBER 10-14, 2022 - CISM
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to be continued...

OCTOBER 10-14,2022 - CISM
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