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• Recall: Deterministic Data-Driven problems are defined by:
– A phase space Z of dimension 2N
– A material data set D in the form of a graph (manifold) of dimension N
– An admissible set E in the form of an affine subspace of dimension N

• The set of classical solutions of the Data-Driven problem is DՈE (possibly ø)
• But: Problems can be stochastic in nature due to:

– Observational error (scatter) but deterministic true material law

– Motivation



True stress–true strain curves generated by 
XRD/DIC technique for irradiated and non-
irradiated SA-508-4N ferritic steel specimens. 
Solid lines depict fitted curves assuming power-
law hardening.

Post necking behavior of non-
irradiated and irradiated micro-
tensile specimens. (a,b) Second-
ary electron images. (c,d) Electron 
backscattered diffraction (EBSD) 
orientation maps

Error bars!
Solid lines 
represent
expected

deterministic
true behavior!

– Motivation

A.D. Smith et al., Sci. Rep., (2020) 10:5353.



– Motivation

Sequence of material data sets converging uniformly (increasing number of points, 
decreasing scatter) to a limiting deterministic material law. 
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E. Gumbel, Statistics of Extremes, Columbia University Press, New York, 1958.
A.P. Pagnoncelli, A. Tridello and D.S. Paolino, Mater. Des,, 195 (2020) 109052.

Experimental strength data and Largest Extreme Value Distribution (LEVD) fit. 

Spruce (Picea abies) tensile strength

Coal seam compressive strength Aluminum foam tensile strength

Graphite tensile strength

– Motivation



– Motivation

Sequence of material data sets converging uniformly (increasing number of points, 
decreasing scatter) to a limiting deterministic material law. 

Sequence of discrete point-data sets converging weakly
(in the sense of ‘local averages’) to a limiting material likelihood density. 
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G. Park, K.Y. Oh and W. Nam, 
J. Mar. Sci. Eng., 8 (2020) 876.

Schematic of floating offshore wind turbine 
subjected to stochastic wave and wind loading

Schematic of high-rise building
subjected to strong ground motion 

R. Xu and B. Fatahi, 
Geotext. Geomembr., 46 (2018) 511–528.

– Motivation
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– Observational error (scatter) but deterministic true material law
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• Conventional treatment: Stipulate a material law of the form:

– Motivation

‘forward’ material model
stochastic stress

• Need to model:
– Forward function        , e.g., neural networks + regression
– Prior distribution         , e.g., Gaussian distribution

• Instead: Draw inferences directly from the data, without recourse to 
modeling (Model-Free Data-Driven inference!). How?

Modeling galore!











Conti, S., F. Hoffmann and M. Ortiz,  arXiv:2106.02728 (2021).



Conti, S., F. Hoffmann and M. Ortiz,  arXiv:2106.02728 (2021).



Sequence of discrete point-data sets converging weakly 
to a limiting material likelihood density + deterministic loading. 

Conti, S., F. Hoffmann and M. Ortiz,  arXiv:2106.02728 (2021).



decorrelation cost relative entropy

M. Arroyo and M. Ortiz, Int. J. Numer. Methods Eng., 65 (2006) 2167-2202. 



Explicit in the data!
No modeling of priors!
No modeling of material!

Conti, S., F. Hoffmann and M. Ortiz,  arXiv:2106.02728 (2021).



The term ‘annealing’ refers to
a heat treatment in metallurgy

(Steel sword from Toledo, Spain)

Explicit!

Annealing error
(in flat norm)

Conti, S., F. Hoffmann and M. Ortiz, arXiv:4503091 (2022).

Annealing error reduces 
to zero as 



Conti, S., F. Hoffmann and M. Ortiz, 
arXiv:4503091 (2022).

Sampling error
(in flat norm)



Optimal
annealing
averages
data on

intermediate
scale!



Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.



outlier!

Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.



3D truss test case. Data sets of different 
sizes sampled assuming Gaussian noise 
superposed on linear+cubic material law.

Convergence with respect to data-
set size and annealing rate. Over-

relaxed annealing schedule:

Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.



3D truss test case. Data sets of different 
sizes converging uniformly to 
a linear+cubic material law.

Convergence with respect to data-
set size and annealing rate. Over-

relaxed annealing schedule:

Kirchdoerfer, T. and Ortiz, M., CMAME, 326 (2017) 622-641.



T. Kirchdoerfer and M. Ortiz, IJNME, 113(11) (2018) 1697-1710.

3D truss structure shaking under ground motion.
Random data sets generated according to capped normal distribution 

centered on the true material curve with standard deviation 
in inverse proportion to the square root of the data set size

maximum
likelihood
solver!

– Dynamics






E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022). 



– Convergence

Three-bar truss with sliding-Gaussian material data. 
Computed histograms vs. exact distribution (red) of Δ
for material data-sets of sizes: a) 103; b) 104; c) 105.

d) Kolmogorov-Smirnov error vs. material data-set size.

E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022). 



– Convergence

E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022). 

γ-titanium aluminide alloy, Ti-48Al-2Cr-2Nb,  
cumulative probability of tensile strength.

C. Dresbach et al., Latin American J. Solids
Struct., 13 (2016) 2316–2332.

Left: Material likelihood,
Weibull tensile strength.

Right: Typical empirical
point data set sample.

Three-bar truss, 
monotonically
increasing Δ



– Scope

E. Prume, S. Reese and M. Ortiz, arXiv:2207.06419 (2022). 

Three-bar truss, 
monotonically
increasing Δ

Multimodal
posterior!

Failure mode
likelihoods
inferred!

Material likelihood
non-Gaussian!

No obvious
material law!



– Lightweight space structures

Modular space telescope structure
In-Space Telescope Assembly 

Robotics (ISTAR) 
Hogstrom et al., 65th International 

Astronautical Congress, Toronto, CA: 2014

Aim: Propagate
uncertainties in

material behavior
to structural response,

control aberrations

a) Material data, sliding Gaussian. 
b) Posterior distribution of hub displacement. 
c) Accuracy vs. number of backtracks in 

approximate k-means search. 
d) CPU time in seconds on 12-Core AMD 

Ryzen 9 3900X computer.



to be continued…
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